
31 Aug 2023 How to find positions of spectra on a planet (with IRTF_slit_position.pro)

This document describes how to use a crude IDL routine that will (usually) accurately identify the

latitude/longitude (etc.) for each pixel position along a spectral slit using SCAM (slit camera) images.

Caveats include:

- only tested for Keck/NIRSPEC and IRTF/iSHELL

- assumes spectral slit is aligned either along the planetary meridian or at 90o from the meridian

(i.e., N-S/vertically, or E-W/horizontally)

There are also a lot of touchy parameters to set, so it is unlikely to immediately work for a new dataset

without some tuning. Therefore, to help with such tuning, and maybe with conversion to Python, we first

describe the logic of the approach and follow that with step-by-step instructions for using these routines

on data from the 2023 IRTF Jupiter campaign.

Brief summary of overall logical flow (detailed discussion below):

1. Prepare a planetary ephemeris file (e.g., obtained from JPL Horizons). This contains necessary

detail ordered by UTC, such as sub-observer longitude, angular size, etc.

2. Match scam frames to spectra using UTC header information from each. For example,

IRTF_specmatch.pro or equivalent.

3. Loop through scam frames, finding the best fit planetary limb ellipse for each. This is obviously

the hard part and involves a few steps, such as:

a. Clean up each frame (e.g., by subtracting a sky frame, hot pixel removal, …)

b. Find the slit position (given in Keck header; or determine empirically for iSHELL – doesn’t

appear to shift position once known)

c. (For Keck only: rotate the frame such that the central meridian is aligned vertically)

d. Perform a “good” edge detection on the cleaned frame. This can be tricky, but generally

involves zeroing out sky pixels and then using a function like canny.

e. Create a “Jupiter mask” (=pixel region that is shaped according to angular size, polar tilt,

and platescale) with the y position aligned with a visible pole of the planet

f. Shift the mask in x to find the best x position (=greatest pixel count within mask)

4. Save this info in some convenient way (right now as image outputs and an IDL data structure).

(1) Planetary ephemeris file

We use JPL Horizons to specify planetary ephemerides. For a single instance, you can simply use the web

interface to specify all the settings (e.g., https://ssd.jpl.nasa.gov/horizons/app.html#/). There are also

API commands that you can use to help extract an ephemeris “automatically” (https://ssd-

api.jpl.nasa.gov/doc/horizons_file.html). I use ephgen.pro to do this. For example, using only the

default settings to generate a link might look like:

IDL> x = ephgen()

https://ssd.jpl.nasa.gov/horizons/app.html#/
https://ssd-api.jpl.nasa.gov/doc/horizons_file.html
https://ssd-api.jpl.nasa.gov/doc/horizons_file.html

IDL> print, x

https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27599%27&OBJ_D

ATA=%27YES%27&MAKE_EPHEM=%27YES%27&EPHEM_TYPE=%27OBSERVER%27&CENTER=%27568%27

&START_TIME=%272022-11-05%2004:00%27&STOP_TIME=%272022-11-

05%2010:00%27&STEP_SIZE=%2710%20minutes%27&QUANTITIES=%271,2,8,13,14,15,17,20

,26%27CSV_FORMAT=%27no%27CAL_FORMAT=%27both

Then this ephemeris info would need to be saved in a file for ease of access later. Once you have

generated the link you can just save that as a text file; alternatively, you could use something like wget

to automate it, e.g.:

IDL> eph_out = wget([ephem_weblink], filename=[output_filename.txt])

would save the [ephem_weblink] to [output_filename.txt]. Then, for ease of use, this file should be

parsed and saved as an IDL .sav file. I would use IRTF_read_ephemeris_jup2023.pro to do

that. This routine can also interpolate to get approximate sub-minute variations. Note that this routine

assumes you use very specific “quantities” in generating your ephemeris: 1,2,8,13,14,15,17,20,26! These

are the tick boxes from the web app custom table settings and represent the required parameters.

(2) Matching scam and spectra frames

This step involves some method for assigning each spectral frame to a series of scam frames. I.e., “what

scam images were taken during the integration of this spectrum?”

Eventually this step allows you to convert from scam slit parameters to spectral spatial parameters, as

there is not a 1-to-1 correspondence (different platescale on detectors, different echelle order lengths,

etc.) In the meantime, it also saves time, because you don’t need to fit the limb to scam images that

were taken while not obtaining science data.

I use IRTF_specmatch.pro to do this. You may need to modify a few variables, such as directories,

but it should be relatively straightforward to use otherwise. It will create an IDL file (specvars.sav) in

the spectral directory containing several variables – see “readme” for more detail.

(3) Fitting the planetary limb

The routine that does this is IRTF_slit_pos.pro. It includes many default variables that should

work OK much of the time, but also the option to specify a wide range of parameter tweaks. As an

example, it may be useful to look at IRTF_slit_position_batch.pro as well, as that

demonstrates how you might call the slit mapping routine as well as what variables might commonly

need to be modified.

Clean up each frame:

Whatever helps clean up the image will ultimately help with separating the planetary limb from the

background as well. Here is an example of what IRTF_slit_pos.pro does.

Finding the slit position:

Then we need to find the position of the slit. I leave that as an exercise for the reader, but (a) it is given in

the Keck header info, and (b) for IRTF it is straightforward to find by using a flat frame to sum in x (to find

https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27599%27&OBJ_DATA=%27YES%27&MAKE_EPHEM=%27YES%27&EPHEM_TYPE=%27OBSERVER%27&CENTER=%27568%27&START_TIME=%272022-11-05%2004:00%27&STOP_TIME=%272022-11-05%2010:00%27&STEP_SIZE=%2710%20minutes%27&QUANTITIES=%271,2,8,13,14,15,17,20,26%27CSV_FORMAT=%27no%27CAL_FORMAT=%27both
https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27599%27&OBJ_DATA=%27YES%27&MAKE_EPHEM=%27YES%27&EPHEM_TYPE=%27OBSERVER%27&CENTER=%27568%27&START_TIME=%272022-11-05%2004:00%27&STOP_TIME=%272022-11-05%2010:00%27&STEP_SIZE=%2710%20minutes%27&QUANTITIES=%271,2,8,13,14,15,17,20,26%27CSV_FORMAT=%27no%27CAL_FORMAT=%27both
https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27599%27&OBJ_DATA=%27YES%27&MAKE_EPHEM=%27YES%27&EPHEM_TYPE=%27OBSERVER%27&CENTER=%27568%27&START_TIME=%272022-11-05%2004:00%27&STOP_TIME=%272022-11-05%2010:00%27&STEP_SIZE=%2710%20minutes%27&QUANTITIES=%271,2,8,13,14,15,17,20,26%27CSV_FORMAT=%27no%27CAL_FORMAT=%27both
https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27599%27&OBJ_DATA=%27YES%27&MAKE_EPHEM=%27YES%27&EPHEM_TYPE=%27OBSERVER%27&CENTER=%27568%27&START_TIME=%272022-11-05%2004:00%27&STOP_TIME=%272022-11-05%2010:00%27&STEP_SIZE=%2710%20minutes%27&QUANTITIES=%271,2,8,13,14,15,17,20,26%27CSV_FORMAT=%27no%27CAL_FORMAT=%27both
https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27599%27&OBJ_DATA=%27YES%27&MAKE_EPHEM=%27YES%27&EPHEM_TYPE=%27OBSERVER%27&CENTER=%27568%27&START_TIME=%272022-11-05%2004:00%27&STOP_TIME=%272022-11-05%2010:00%27&STEP_SIZE=%2710%20minutes%27&QUANTITIES=%271,2,8,13,14,15,17,20,26%27CSV_FORMAT=%27no%27CAL_FORMAT=%27both

the y location) and then in y (to find the x locations). Note that the slit you see in Kyle frames is the full

length, however, not the one specified based on the dekker (which you can find in the header)! This is

important to keep in mind when we are converting between scam and spectral pixel positions later.

Figure 1. From left to right we have (a) the original scam image, (b) a nearby sky frame, (c) the sky
subtracted image, and (d) the image with a light pass of acre.pro (hot pixel removal).

Perform a “good” edge detection:

Even with the quick image cleaning from above, there will likely be too much scatter to clearly delineate

between “sky” and “planet” pixels in any easily-automated way. So let’s clean even more! Presently,

IRTF_specmatch.pro does this in a few steps (but they are very kludge-y and subject to change):

- Figure 2a: apply a crude hot pixel smoothing (e.g., threshold of 3 and width of 12 pixels)

- Figure 2b: replace the pixel values along the slit with the mean image value (probably not

needed in this example, but sometimes helps)

- Figure 2c: sum along rows and apply the same slit value correction if needed (to make sure the

slit values are not “too low”; should then lead to a clear step from “sky” to “planet”)

- Find “sky pixels” by (a) finding the mean and standard deviation of the sky background pixels

from 2c, (b) and then using these to estimate what pixel values from the 2D image should be

zeroed out (based on whether they are within nskySD  of the mean)

- Figure 2d: at this point, we can perform an even better edge detection, so we use canny (this

leaves behind only 0s and 1s)

Figure 2. From left to right we have (a) a crude hot pixel smoothed version of the image in 1d, (b) the
same with the slit pixels corrected, (c) the column-summed version of this, and (d) the result of using
2c to define and zero out sky pixels followed by applying the edge detection function, canny.

If the settings are just right (usually nskySD and skyvalSD may need to be altered), then we can

overplot our new edge detected frame and slit position on top of our original image to confirm that

everything looks good for fitting the limb. Figure 3a shows an example of what it should look like when

things are going ok. Even though the red contours don’t really match the planet, the ones near the pole

are pretty good, even with the slit complicating matters, and those are the ones we use to fit our Jupiter

ellipse.

The settings can be wrong in usually one of three ways: (1) there are red contours all over the sky

(probably skyvalSD is too low), (2) the contours overhang the limb (probably nskySD is too low), or

(3) the contours are either non-existent or well within the edge of the planet (probably nskySD is too

high, skyvalSD may also need to be changed).

Then, based on whether there are more bright pixels in the top or bottom of the frame, we determine

the slit as being in the south or north of the planet. This is important because this is the planetary limb

we will try to fit with a Jupiter ellipse (that is drawn based on ephemeris and header info). We take the

output from 2d and, going column-by-column, only enhance the first “edge” we see starting from the

bottom. The bottommost of these white pixels (in Figure 3b) then marks the polar limb of a Jupiter

ellipse, drawn here in cyan.

We next need to determine the best x pixel for the center of our Jupiter ellipse. We do this by simply

shifting left and right in x to find when we have maximized the number of white pixels being within the

ellipse.

At this point we know the best xy coordinates for centering our Jupiter ellipse, and we know the pixel

coordinates of the spectral slit. All that is left to do is to figure out the planetary parameters for each

pixel along the slit. To do this we turn to deprob, a routine developed by Mike Wong. Given our known

positions and ephemeris, it will essentially draw a grid on the planet and we can then use this grid to

extract things like latitude and longitude for each pixel position along the slit. E.g.,

IDL> ob_scam = deprob(xsq, ysq, ang_a, ang_b, lat_se, lon_se, npang=-90.)

IDL> lats_pc = ob_scam.lat_pc([xslitpixr[1:*]],[yslitpixr[1:*]])

would create a data structure, ob_scam, that contains things like planetocentric latitude as a function

of pixel position. The second command then simply extracts that info based on known x and y slit pixel

positions.

The end, success! (Other than a few important details that will be left for later, such as accounting for the

dekker, and converting the positional info from scam images into positional info for spectra – though the

latter is a basically just an interpolation.) The resulting fit for this example is given in Figure 4.

Figure 3. (left) original cleaned scam image overlaid with edge detection contours in red and the slit
location in yellow. (right) The “southern edge only” edge detection frame in white with the Jupiter
ellipse in cyan. Red lines mark regions of the detector that are not used in the fit.

Figure 4. The resulting fit, with (a) the Jupiter ellipse, grid, and slit location, and (b) corresponding
planetocentric/planetographic latitudes and longitudes.

(4) Saving the outputs

IRTF_slit_pos.pro creates an IDL data structure output called scamslit.sav that is put into

the corresponding scam directory. See scamslit.readme for details.

Additional Notes

This mapping routine is just a start. For instance, it only gives pixel positions along the center of the slit

and doesn’t currently account for slit width or seeing. More accurately, the slit would cover a range of

latitudes and longitudes based on those parameters (e.g., see the Keck NIRSPEC data reduction guide,

which does account for that). Combining positional info from spectrum to spectrum is therefore helped

by mapping the slit position, but it is still probably non-trivial.

Here is a mostly complete list of all the routines described in this document, arranged in approximate
order of how they would be used.

Subroutines are also identified, most of which will be standard IDL library or REDSPEC routines. We
don’t always identify those here (e.g., readfits).

Note that many of these routines also use the Coyote IDL library (and Image Magick). For more info, see
http://www.idlcoyote.com/documents/programs.php#COYOTE_LIBRARY_DOWNLOAD,
http://www.idlcoyote.com/graphics_tips/weboutput.php, and
http://www.imagemagick.org/script/index.php.

Likely those requirements could be dropped if needed, but it might be tedious to correct each error that

crops up to do so.

Program Name (non-standard)
Subroutines

Description

IRTF_specmatch os_slash_fix
Matches scam images with
spectra based on UTC

ephgen
Creates JPL Horizons web link
for ephemeris

IRTF_read_ephemeris_jup2023 os_slash_fix, strfix
Reads ephemeris text file,
interpolates, creates .sav.

IRTF_slit_pos os_slash_fix
Finds the planetary coords for
each slit pixel position

IRTF_slit_position_batch os_slash_fix, strfix
Runs IRTF_slit_pos for each
2023 IRTF Jupiter date

acre
Automatic Cosmic Ray
Extraction by Marc W. Buie

deprob
DEPRoject onto OBlate
spheroid by Mike Wong

Many of these (basically all of mine) are in half-finished, poorly commented states, so this is just

something to get things started, and hopefully code improvements and finalizations will follow soonTM.

http://www.idlcoyote.com/documents/programs.php#COYOTE_LIBRARY_DOWNLOAD
http://www.idlcoyote.com/graphics_tips/weboutput.php
http://www.imagemagick.org/script/index.php

